Prediccion de corto plazo de generación de energía de unsistema microeolico empleando redes neuronales Long Short-Term Memory
Palabras clave:
Micro Turbina Eólica, Predicción, LSTMResumen
En primer lugar, se fundamenta la importancia de las Redes Inteligentes en el contexto de la Transición Energética. Las predicciones, de producción o demanda, juegan un rol clave para diferentes tipos de análisis y operación de este tipo de redes. Se describen las diferentes técnicas para la resolución de tal problema y se destacan las Redes Neuronales, particularmente las Long Short-Term Memory. A partir de esto se desarrolló una herramienta predictiva de corto plazo de producción de energía de una instalación MicroEólica basada en una Long Short-Term Memory. Para su entrenamiento se emplean datos de velocidad y dirección de viento, registrada por el Servicio Meteorológico Nacional y por el Observatorio Hidro-Meteorológico de Córdoba, en el primer caso registros de información histórica y en el segundo los pronósticos de tales parámetros para el día siguiente. Para complementar los datos de entrenamiento se dispone de la energía generada por una Microturbina. Se muestran resultados promisorios en las predicciones. También se relaciona la energía específica del recurso y la producción de energía según diferentes velocidades y direcciones de viento. Esto último se considera un aporte para la comprensión de la complejidad del modelado físico del viento y la producción de una Microturbina.