COLECCION PLANA DE ENERGIA SOLAR

Por:

A. FASULO

M. MARCOLINI

O. GOMEZ

UNIVERSIDAD NACIONAL DE SALN LUIS Cchacabuco y Pedernera SAN LUIS. (5700)

RESUMEN

Se estudian varios de losparámetros que intervienen en un / transformador plano de Energía Solar en Térmuca a los efectos de determina: , la influencia de cada uno de ellos en el rendimiento; con estos datos se posibilita el diseño de diversos colectores según los propósitos y eficiencias e-conómicas deseadas.

1.- INTRODUCCION

Para poder diseñar un colector plano de energía solar de acuería querimientos pre-establecidos con respecto a la temperatura le sallía para una dada de entrada, caudal, espacio a ocupar y costo, se requiere un buen conocimiento del comportamiento de las diversas secciones del colector en función de los materiales con que se lo construya.

Esta experiencia tiene por objeto dar una respuesta a lo sefalado precedentemente, para ello disponemos de una caja colectora militable que permite a lojar simultáneamente seis pequeños colectores, de 750 x 175 x 1 m², construidos con chapas de aluminio, cobre, zing o hierro, ligândolas a caños de aluminio, hidro-bronz o hierro galvanizado por medio de ataduras o soldaduras, a tra vés de una moldura efectuada en el centro y a lo largo de cada chapa; de las posibles combinaciones se analizan las siguientes:

- Placa de aluminio con caño de aluminio atado.
- N Placa de aluminio con caño de aluminio soldada con aleación Al.
- O Placa de aluminio con caño de hidro-bronzatado.
- D Placa de alumínio con caño de Fe-galvanizado atado
- A Placa de Cobre con caño de hidro-bronz soldado
- 4 Placa de zing con caño de hidro-bronz soldado
- la Placa de Hierro (chapa negra) con caño de hidro-bronz soldado

En la enumeración precedente a la impuiente de culo une de les médicos se ha puesto el símbolo con que en lo sucesivo lo designarenos. Por otra parte / haremos notar que las indicaciones "soldado" se refiere a estaño excepto la placa de cobre con la cual además se experimentó con una soldadura con una alea. En de bronce, no observándose diferencia alguna con la tratada con estaño.

2.- DESCRIPCION DEL APARATO

Se dispone de una caja, de aproximadamente dos metros de ancho por uno; de alto, de chapa, dividida en tres secciones iguales, las cuales som fouralas en su interior con panes de lana de vidrio de unos siete centímetros de espesión, y en cada sector se ubican dos chapas, separadas entre sí pos una aislación de / lana de vidrio de siete centímetros de ancho, la cual así como las dislaciones / laterales se extienden hasta la superficie comque se tapa cada sección de la caja. La tapa ha sido construída con hierro L permitiendo alojar hasta dos vi- /// drios, es aplicada a la caja por medio do tornillos.

la caja colectora se inspono mediante soportes con una inclinación de aproximadamente marerta grado con la horizonta., de manera que hasta resulta perpendicular a los rayos solares en el mes de abril.

Al caño correspondiente a cada placa se le incerta en cada extremo una terminal roscada, a las cuales se aplican sendos caños plásticos, con terminales roscadas, por medio de las cuales ingresa agua por el extremo inferior y sale el agua caliente por el superior, el fluído que ingresa a los colectores/proviene de un tanque común que se mantiene durante la experiencia a un mismo/nivel a los efectos de mantener constante la presión y con ello el flujo de agua, el caudal de agua que surge por las mangueras superiores es regulado a voluntad por medio de picos de los empleados en los quemadores de gas, éste se / regoge en probetas graduadas.

Las temperaturas son controladas por medio de termémetros graduados / en quintos de grados, los cuales son aplicados inmediatamente de las salidas / de cada uno de los médulos, el conjunto está representado en la figura 1.

3.- EXPERIENCIA

La experiencia se realiza de la siguiente manera; se determinan cada/ diez minutos la temperatura de entrada y la de salida de cada elemento, con me didas simultáneas de la radiación solar en el plano del colector, a la vez se/ recoge el caudal durante el intervalo de médida.

Se determina la cantidad de calor aprovechado:

donde C es el calor específico del agua, m la masa que circula y AT diferencia de temperaturas de entrada y salida.

La cantidad de calor solar incidente es:

donde R es la radiación solar por unidad de superficie, S la superficie de una de las chapas y at el intervalo de tiempo tomado.

El rendimiento se lo define por:

$$r = Q_{apr} \cdot / Q_{sol}$$
.

L a eficiencia económica por:

$$\varepsilon = n / \cos to por m^2$$

En cada jornada de medida se realizaron unas veinticinos determinaciones, trabajando unas cuatro noras con centro en la medición solar, en este in-

tervalo n permanece constante dentro del intervalo de error con que se trabajo, el promedio de los valores así obtenidos se representa por el símiclo corresto; diente en la figura 3.

4.- RESULTADOS OBTENIDOS

cluidas en cada jornada de medición, obtendremos una secuencia de valores, los cuales son representados en la figura 2 por medio del símbolo. Ellos nos muestran resultados diferentes para cada jornada, de acuerdo con las condiciones climáticas del día (temperatura ambiente y vientos); por ejemplo entre las tercera y cuarta experiencia realizadas con pocos días de diferencia en el res le octubre (1975) da resultados sensiblemente superiores para la filtuma, coinci-/diendo con un día sinviento. Estas variaciones atribuidas esecialmente a las //pérdidas que sufre el sistema afecta a todo el conjunto por igual, por lo tanto es de esperar que cada una de las placas muestre oscilaciones de este tipo en-/tre distintas fechas, como lo hace la representada en la figura 2.

Con la observación precedente podemos pasar a analizar los resultados, para cada una de las placas: De la figura 3 se ve una neta diferenciación e tre el conjunto de placas atadas y las soldadas (primeras seis experiencias). E to tra parte entre estas últimas se ve la existencia de una dependencia (más é ril que la anterior) con respecto a la conductividad del material.

Las experiencias sexta y séptima se efectúa con doble vidrio y en días de vientos normales, observándose que se reproducen los valores obtenidos en el día sin viento ya señalado anteriormente.

A partir de las experiencias del mes de diciembre se incluyen placas de zing y de hierro, soldadas, las cuales presentan rendimientos inferiores reapecto a las otras soldadas, pero superiores a cualquiera de las atadas, no objeto servándose, por otra parte, diferencias significativas entre ambas.

En las diferentes experiencias se procedió a intercambiar los lugares de hubicación de las chapas y a eliminar algunas de ellas, a efectos de detectar alguna relación entre ellas y los sitios ocupados, con resultados negativos. También se procedió a variar las temperaturas de entradas (con los resultados de la figura 4) y a modificar el caudal notándose una muy débil dependen-//cia del rendimiento con él (no apreciable entre valores que vayan de 40 cr⁶ min a 130 cm³/min.).

La figura 4 nos muestra que para las temperaturas normales de operación de un colector asociado a un calefon solar las chapas de aluminio y cobresufren en igual medida los efectos de las mayores párdidas al operar a majores/ temperaturas de entrada del fluído, no así para las chapas de zing e hierro.

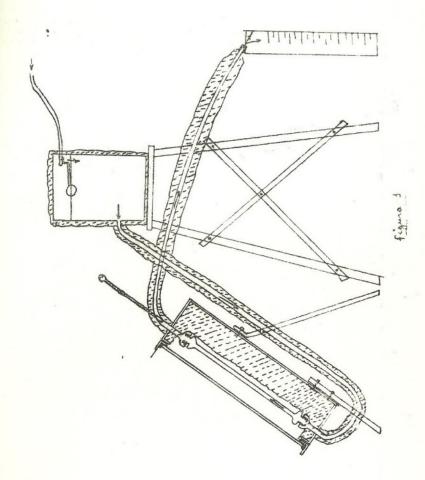
5.- EFICIENCIA FROMOMICA Y COSTOS

A los efectos de hacer un cálculo comparativo lo más realista posible consideremos que se desea construir un colector capáz de calentar 300 litros / de agua desde 13° a 50°, trabajando cuatro horas en torno del pico de radia- / ción en el mes de julio (R $^{\sim}$ l.lcal/cm²mun) y de una sola pasada.

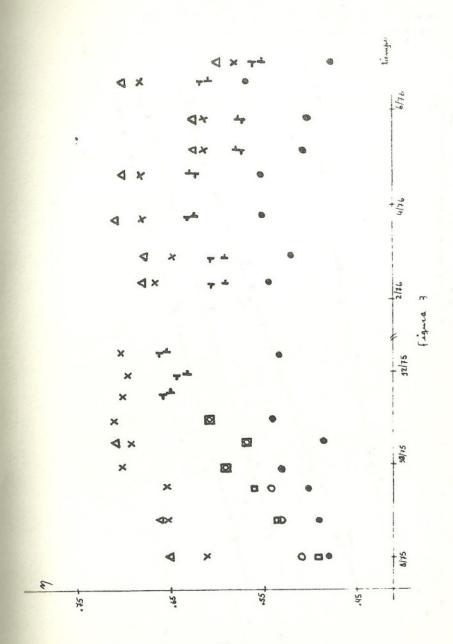
Operando con los datos de la figura 4 podremos obtener los metros cua drados y el rendimiento efectivo quepresentará el colector.

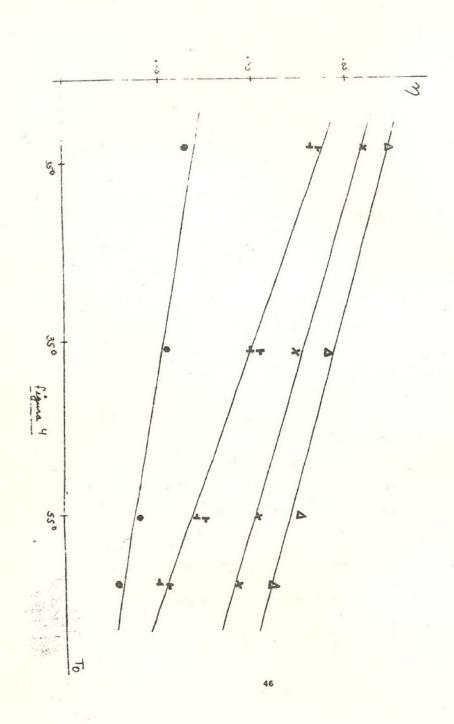
Para las condiciones impuestas se obtiene:

Collector		×	Δ	41-	0	O
n efectivo	.46	.63	.67	.57	.48	.48
m ²	6,6	4,6	4,3	5,2	6,3	6,3


Si ahora hacemos estimaciones econômicas computando. Mano de obra y / costo de materiales (a precio minorista en San Luis), tendremos una idea apronomia de lo que debería gastar una persona que decidiese realizar por su ///
cuenta la construcción de un colector de las características señaladas.

Colector		×	Δ	-18-	0	D
	38	39	21	35	30	32
Costo en miles de pesos	81	75	140	84	105	100


Se concluye que el colector más económico es aquél que se construye / con caños de aluminio, pero en este caso deberá tenerse en cuenta la corta durabilidad del mismo.


Si se desea un material de larga duración como lo es el hidro-bronz / el colector más económico es el construído con chapas de zing o chapa negra.

Por otra parte vemos que colectores construídos con chapas de cobre / resultan los que requieren una menor saperficie pero a su vez resultan ser los más costosos.

